Metamath Proof Explorer


Theorem qusmulcrng

Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)

Ref Expression
Hypotheses qusmulcrng.h Q = R / 𝑠 R ~ QG I
qusmulcrng.v B = Base R
qusmulcrng.p · ˙ = R
qusmulcrng.a × ˙ = Q
qusmulcrng.r φ R CRing
qusmulcrng.i φ I LIdeal R
qusmulcrng.x φ X B
qusmulcrng.y φ Y B
Assertion qusmulcrng φ X R ~ QG I × ˙ Y R ~ QG I = X · ˙ Y R ~ QG I

Proof

Step Hyp Ref Expression
1 qusmulcrng.h Q = R / 𝑠 R ~ QG I
2 qusmulcrng.v B = Base R
3 qusmulcrng.p · ˙ = R
4 qusmulcrng.a × ˙ = Q
5 qusmulcrng.r φ R CRing
6 qusmulcrng.i φ I LIdeal R
7 qusmulcrng.x φ X B
8 qusmulcrng.y φ Y B
9 5 crngringd φ R Ring
10 eqid LIdeal R = LIdeal R
11 10 crng2idl R CRing LIdeal R = 2Ideal R
12 5 11 syl φ LIdeal R = 2Ideal R
13 6 12 eleqtrd φ I 2Ideal R
14 1 2 3 4 9 13 7 8 qusmul2idl φ X R ~ QG I × ˙ Y R ~ QG I = X · ˙ Y R ~ QG I