Metamath Proof Explorer


Theorem qusmulrng

Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng . Similar to qusmul2 . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 28-Feb-2025)

Ref Expression
Hypotheses qusmulrng.e ˙ = R ~ QG S
qusmulrng.h H = R / 𝑠 ˙
qusmulrng.b B = Base R
qusmulrng.p · ˙ = R
qusmulrng.a ˙ = H
Assertion qusmulrng R Rng S 2Ideal R S SubGrp R X B Y B X ˙ ˙ Y ˙ = X · ˙ Y ˙

Proof

Step Hyp Ref Expression
1 qusmulrng.e ˙ = R ~ QG S
2 qusmulrng.h H = R / 𝑠 ˙
3 qusmulrng.b B = Base R
4 qusmulrng.p · ˙ = R
5 qusmulrng.a ˙ = H
6 2 a1i R Rng S 2Ideal R S SubGrp R H = R / 𝑠 ˙
7 3 a1i R Rng S 2Ideal R S SubGrp R B = Base R
8 3 1 eqger S SubGrp R ˙ Er B
9 8 3ad2ant3 R Rng S 2Ideal R S SubGrp R ˙ Er B
10 simp1 R Rng S 2Ideal R S SubGrp R R Rng
11 eqid 2Ideal R = 2Ideal R
12 3 1 11 4 2idlcpblrng R Rng S 2Ideal R S SubGrp R a ˙ b c ˙ d a · ˙ c ˙ b · ˙ d
13 10 anim1i R Rng S 2Ideal R S SubGrp R b B d B R Rng b B d B
14 3anass R Rng b B d B R Rng b B d B
15 13 14 sylibr R Rng S 2Ideal R S SubGrp R b B d B R Rng b B d B
16 3 4 rngcl R Rng b B d B b · ˙ d B
17 15 16 syl R Rng S 2Ideal R S SubGrp R b B d B b · ˙ d B
18 6 7 9 10 12 17 4 5 qusmulval R Rng S 2Ideal R S SubGrp R X B Y B X ˙ ˙ Y ˙ = X · ˙ Y ˙
19 18 3expb R Rng S 2Ideal R S SubGrp R X B Y B X ˙ ˙ Y ˙ = X · ˙ Y ˙