Step |
Hyp |
Ref |
Expression |
1 |
|
qusring.u |
|
2 |
|
qusring.i |
|
3 |
|
qusrhm.x |
|
4 |
|
qusrhm.f |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
simpl |
|
10 |
1 2
|
qusring |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
11 12 13 2
|
2idlval |
|
15 |
14
|
elin2 |
|
16 |
15
|
simplbi |
|
17 |
11
|
lidlsubg |
|
18 |
16 17
|
sylan2 |
|
19 |
|
eqid |
|
20 |
3 19
|
eqger |
|
21 |
18 20
|
syl |
|
22 |
3
|
fvexi |
|
23 |
22
|
a1i |
|
24 |
21 23 4
|
divsfval |
|
25 |
1 2 5
|
qus1 |
|
26 |
25
|
simprd |
|
27 |
24 26
|
eqtrd |
|
28 |
1
|
a1i |
|
29 |
3
|
a1i |
|
30 |
3 19 2 7
|
2idlcpbl |
|
31 |
3 7
|
ringcl |
|
32 |
31
|
3expb |
|
33 |
32
|
adantlr |
|
34 |
33
|
caovclg |
|
35 |
28 29 21 9 30 34 7 8
|
qusmulval |
|
36 |
35
|
3expb |
|
37 |
21
|
adantr |
|
38 |
22
|
a1i |
|
39 |
37 38 4
|
divsfval |
|
40 |
37 38 4
|
divsfval |
|
41 |
39 40
|
oveq12d |
|
42 |
37 38 4
|
divsfval |
|
43 |
36 41 42
|
3eqtr4rd |
|
44 |
|
ringabl |
|
45 |
44
|
adantr |
|
46 |
|
ablnsg |
|
47 |
45 46
|
syl |
|
48 |
18 47
|
eleqtrrd |
|
49 |
3 1 4
|
qusghm |
|
50 |
48 49
|
syl |
|
51 |
3 5 6 7 8 9 10 27 43 50
|
isrhm2d |
|