Metamath Proof Explorer


Theorem qusrhm

Description: If S is a two-sided ideal in R , then the "natural map" from elements to their cosets is a ring homomorphism from R to R / S . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses qusring.u U = R / 𝑠 R ~ QG S
qusring.i I = 2Ideal R
qusrhm.x X = Base R
qusrhm.f F = x X x R ~ QG S
Assertion qusrhm R Ring S I F R RingHom U

Proof

Step Hyp Ref Expression
1 qusring.u U = R / 𝑠 R ~ QG S
2 qusring.i I = 2Ideal R
3 qusrhm.x X = Base R
4 qusrhm.f F = x X x R ~ QG S
5 eqid 1 R = 1 R
6 eqid 1 U = 1 U
7 eqid R = R
8 eqid U = U
9 simpl R Ring S I R Ring
10 1 2 qusring R Ring S I U Ring
11 eqid LIdeal R = LIdeal R
12 eqid opp r R = opp r R
13 eqid LIdeal opp r R = LIdeal opp r R
14 11 12 13 2 2idlval I = LIdeal R LIdeal opp r R
15 14 elin2 S I S LIdeal R S LIdeal opp r R
16 15 simplbi S I S LIdeal R
17 11 lidlsubg R Ring S LIdeal R S SubGrp R
18 16 17 sylan2 R Ring S I S SubGrp R
19 eqid R ~ QG S = R ~ QG S
20 3 19 eqger S SubGrp R R ~ QG S Er X
21 18 20 syl R Ring S I R ~ QG S Er X
22 3 fvexi X V
23 22 a1i R Ring S I X V
24 21 23 4 divsfval R Ring S I F 1 R = 1 R R ~ QG S
25 1 2 5 qus1 R Ring S I U Ring 1 R R ~ QG S = 1 U
26 25 simprd R Ring S I 1 R R ~ QG S = 1 U
27 24 26 eqtrd R Ring S I F 1 R = 1 U
28 1 a1i R Ring S I U = R / 𝑠 R ~ QG S
29 3 a1i R Ring S I X = Base R
30 3 19 2 7 2idlcpbl R Ring S I a R ~ QG S c b R ~ QG S d a R b R ~ QG S c R d
31 3 7 ringcl R Ring y X z X y R z X
32 31 3expb R Ring y X z X y R z X
33 32 adantlr R Ring S I y X z X y R z X
34 33 caovclg R Ring S I c X d X c R d X
35 28 29 21 9 30 34 7 8 qusmulval R Ring S I y X z X y R ~ QG S U z R ~ QG S = y R z R ~ QG S
36 35 3expb R Ring S I y X z X y R ~ QG S U z R ~ QG S = y R z R ~ QG S
37 21 adantr R Ring S I y X z X R ~ QG S Er X
38 22 a1i R Ring S I y X z X X V
39 37 38 4 divsfval R Ring S I y X z X F y = y R ~ QG S
40 37 38 4 divsfval R Ring S I y X z X F z = z R ~ QG S
41 39 40 oveq12d R Ring S I y X z X F y U F z = y R ~ QG S U z R ~ QG S
42 37 38 4 divsfval R Ring S I y X z X F y R z = y R z R ~ QG S
43 36 41 42 3eqtr4rd R Ring S I y X z X F y R z = F y U F z
44 ringabl R Ring R Abel
45 44 adantr R Ring S I R Abel
46 ablnsg R Abel NrmSGrp R = SubGrp R
47 45 46 syl R Ring S I NrmSGrp R = SubGrp R
48 18 47 eleqtrrd R Ring S I S NrmSGrp R
49 3 1 4 qusghm S NrmSGrp R F R GrpHom U
50 48 49 syl R Ring S I F R GrpHom U
51 3 5 6 7 8 9 10 27 43 50 isrhm2d R Ring S I F R RingHom U