Metamath Proof Explorer


Theorem qusrn

Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses qusrn.b B = Base G
qusrn.e U = B / G ~ QG N
qusrn.f F = x B x G ~ QG N
qusrn.n φ N NrmSGrp G
Assertion qusrn φ ran F = U

Proof

Step Hyp Ref Expression
1 qusrn.b B = Base G
2 qusrn.e U = B / G ~ QG N
3 qusrn.f F = x B x G ~ QG N
4 qusrn.n φ N NrmSGrp G
5 eqid LSSum G = LSSum G
6 nsgsubg N NrmSGrp G N SubGrp G
7 4 6 syl φ N SubGrp G
8 7 adantr φ x B N SubGrp G
9 1 5 8 qusbas2 φ B / G ~ QG N = ran x B x LSSum G N
10 2 9 eqtrid φ U = ran x B x LSSum G N
11 ovex G ~ QG N V
12 ecexg G ~ QG N V x G ~ QG N V
13 11 12 mp1i φ x B x G ~ QG N V
14 3 13 dmmptd φ dom F = B
15 14 imaeq2d φ F dom F = F B
16 eqid G / 𝑠 G ~ QG N = G / 𝑠 G ~ QG N
17 eqid h SubGrp G ran x h x LSSum G N = h SubGrp G ran x h x LSSum G N
18 subgrcl N SubGrp G G Grp
19 1 subgid G Grp B SubGrp G
20 4 6 18 19 4syl φ B SubGrp G
21 ssidd φ SubGrp G SubGrp G
22 1 16 5 17 3 4 20 21 qusima φ h SubGrp G ran x h x LSSum G N B = F B
23 mpteq1 h = B x h x LSSum G N = x B x LSSum G N
24 23 rneqd h = B ran x h x LSSum G N = ran x B x LSSum G N
25 20 mptexd φ x B x LSSum G N V
26 25 rnexd φ ran x B x LSSum G N V
27 17 24 20 26 fvmptd3 φ h SubGrp G ran x h x LSSum G N B = ran x B x LSSum G N
28 15 22 27 3eqtr2rd φ ran x B x LSSum G N = F dom F
29 imadmrn F dom F = ran F
30 28 29 eqtrdi φ ran x B x LSSum G N = ran F
31 10 30 eqtr2d φ ran F = U