Metamath Proof Explorer


Theorem quss

Description: The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses qusbas.u φ U = R / 𝑠 ˙
qusbas.v φ V = Base R
qusbas.e φ ˙ W
qusbas.r φ R Z
quss.k K = Scalar R
Assertion quss φ K = Scalar U

Proof

Step Hyp Ref Expression
1 qusbas.u φ U = R / 𝑠 ˙
2 qusbas.v φ V = Base R
3 qusbas.e φ ˙ W
4 qusbas.r φ R Z
5 quss.k K = Scalar R
6 eqid x V x ˙ = x V x ˙
7 1 2 6 3 4 qusval φ U = x V x ˙ 𝑠 R
8 1 2 6 3 4 quslem φ x V x ˙ : V onto V / ˙
9 7 2 8 4 5 imassca φ K = Scalar U