Metamath Proof Explorer


Theorem qustgp

Description: The quotient of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis qustgp.h H = G / 𝑠 G ~ QG Y
Assertion qustgp G TopGrp Y NrmSGrp G H TopGrp

Proof

Step Hyp Ref Expression
1 qustgp.h H = G / 𝑠 G ~ QG Y
2 eqid Base G = Base G
3 eqid TopOpen G = TopOpen G
4 eqid TopOpen H = TopOpen H
5 eqid x Base G x G ~ QG Y = x Base G x G ~ QG Y
6 eqid z Base G , w Base G z - G w G ~ QG Y = z Base G , w Base G z - G w G ~ QG Y
7 1 2 3 4 5 6 qustgplem G TopGrp Y NrmSGrp G H TopGrp