Step |
Hyp |
Ref |
Expression |
1 |
|
qustgp.h |
|
2 |
|
qustgpopn.x |
|
3 |
|
qustgpopn.j |
|
4 |
|
qustgpopn.k |
|
5 |
|
qustgpopn.f |
|
6 |
|
imassrn |
|
7 |
1
|
a1i |
|
8 |
2
|
a1i |
|
9 |
|
ovex |
|
10 |
9
|
a1i |
|
11 |
|
simp1 |
|
12 |
7 8 5 10 11
|
quslem |
|
13 |
|
forn |
|
14 |
12 13
|
syl |
|
15 |
6 14
|
sseqtrid |
|
16 |
|
eceq1 |
|
17 |
16
|
cbvmptv |
|
18 |
5 17
|
eqtri |
|
19 |
18
|
mptpreima |
|
20 |
19
|
rabeq2i |
|
21 |
5
|
funmpt2 |
|
22 |
|
fvelima |
|
23 |
21 22
|
mpan |
|
24 |
3 2
|
tgptopon |
|
25 |
11 24
|
syl |
|
26 |
|
simp3 |
|
27 |
|
toponss |
|
28 |
25 26 27
|
syl2anc |
|
29 |
28
|
adantr |
|
30 |
29
|
sselda |
|
31 |
|
eceq1 |
|
32 |
|
ecexg |
|
33 |
9 32
|
ax-mp |
|
34 |
31 5 33
|
fvmpt |
|
35 |
30 34
|
syl |
|
36 |
35
|
eqeq1d |
|
37 |
|
eqcom |
|
38 |
36 37
|
bitrdi |
|
39 |
|
nsgsubg |
|
40 |
39
|
3ad2ant2 |
|
41 |
40
|
ad2antrr |
|
42 |
|
eqid |
|
43 |
2 42
|
eqger |
|
44 |
41 43
|
syl |
|
45 |
|
simplr |
|
46 |
44 45
|
erth |
|
47 |
11
|
ad2antrr |
|
48 |
2
|
subgss |
|
49 |
41 48
|
syl |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
2 50 51 42
|
eqgval |
|
53 |
47 49 52
|
syl2anc |
|
54 |
38 46 53
|
3bitr2d |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
51 55 56
|
oppgplus |
|
58 |
57
|
mpteq2i |
|
59 |
47
|
adantr |
|
60 |
55
|
oppgtgp |
|
61 |
59 60
|
syl |
|
62 |
49
|
sselda |
|
63 |
|
eqid |
|
64 |
55 2
|
oppgbas |
|
65 |
55 3
|
oppgtopn |
|
66 |
63 64 56 65
|
tgplacthmeo |
|
67 |
61 62 66
|
syl2anc |
|
68 |
58 67
|
eqeltrrid |
|
69 |
|
hmeocn |
|
70 |
68 69
|
syl |
|
71 |
26
|
ad3antrrr |
|
72 |
|
cnima |
|
73 |
70 71 72
|
syl2anc |
|
74 |
45
|
adantr |
|
75 |
|
tgpgrp |
|
76 |
59 75
|
syl |
|
77 |
|
eqid |
|
78 |
2 51 77 50
|
grprinv |
|
79 |
76 74 78
|
syl2anc |
|
80 |
79
|
oveq1d |
|
81 |
2 50
|
grpinvcl |
|
82 |
76 74 81
|
syl2anc |
|
83 |
30
|
adantr |
|
84 |
2 51
|
grpass |
|
85 |
76 74 82 83 84
|
syl13anc |
|
86 |
2 51 77
|
grplid |
|
87 |
76 83 86
|
syl2anc |
|
88 |
80 85 87
|
3eqtr3d |
|
89 |
|
simplr |
|
90 |
88 89
|
eqeltrd |
|
91 |
|
oveq1 |
|
92 |
91
|
eleq1d |
|
93 |
|
eqid |
|
94 |
93
|
mptpreima |
|
95 |
92 94
|
elrab2 |
|
96 |
74 90 95
|
sylanbrc |
|
97 |
|
ecexg |
|
98 |
9 97
|
ax-mp |
|
99 |
98 5
|
fnmpti |
|
100 |
29
|
ad3antrrr |
|
101 |
|
fnfvima |
|
102 |
101
|
3expia |
|
103 |
99 100 102
|
sylancr |
|
104 |
76
|
adantr |
|
105 |
|
simpr |
|
106 |
62
|
adantr |
|
107 |
2 51
|
grpcl |
|
108 |
104 105 106 107
|
syl3anc |
|
109 |
|
eceq1 |
|
110 |
109 5 98
|
fvmpt3i |
|
111 |
108 110
|
syl |
|
112 |
44
|
ad2antrr |
|
113 |
2 51 77 50
|
grplinv |
|
114 |
104 105 113
|
syl2anc |
|
115 |
114
|
oveq1d |
|
116 |
2 50
|
grpinvcl |
|
117 |
104 105 116
|
syl2anc |
|
118 |
2 51
|
grpass |
|
119 |
104 117 105 106 118
|
syl13anc |
|
120 |
2 51 77
|
grplid |
|
121 |
104 106 120
|
syl2anc |
|
122 |
115 119 121
|
3eqtr3d |
|
123 |
|
simplr |
|
124 |
122 123
|
eqeltrd |
|
125 |
49
|
ad2antrr |
|
126 |
2 50 51 42
|
eqgval |
|
127 |
104 125 126
|
syl2anc |
|
128 |
105 108 124 127
|
mpbir3and |
|
129 |
112 128
|
erthi |
|
130 |
111 129
|
eqtr4d |
|
131 |
130
|
eleq1d |
|
132 |
103 131
|
sylibd |
|
133 |
132
|
ss2rabdv |
|
134 |
|
eceq1 |
|
135 |
134
|
cbvmptv |
|
136 |
5 135
|
eqtri |
|
137 |
136
|
mptpreima |
|
138 |
133 94 137
|
3sstr4g |
|
139 |
|
eleq2 |
|
140 |
|
sseq1 |
|
141 |
139 140
|
anbi12d |
|
142 |
141
|
rspcev |
|
143 |
73 96 138 142
|
syl12anc |
|
144 |
143
|
3ad2antr3 |
|
145 |
144
|
ex |
|
146 |
54 145
|
sylbid |
|
147 |
146
|
rexlimdva |
|
148 |
23 147
|
syl5 |
|
149 |
148
|
expimpd |
|
150 |
20 149
|
syl5bi |
|
151 |
150
|
ralrimiv |
|
152 |
|
topontop |
|
153 |
|
eltop2 |
|
154 |
25 152 153
|
3syl |
|
155 |
151 154
|
mpbird |
|
156 |
|
elqtop3 |
|
157 |
25 12 156
|
syl2anc |
|
158 |
15 155 157
|
mpbir2and |
|
159 |
7 8 5 10 11
|
qusval |
|
160 |
159 8 12 11 3 4
|
imastopn |
|
161 |
158 160
|
eleqtrrd |
|