Metamath Proof Explorer


Theorem qustps

Description: A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses qustps.u φ U = R / 𝑠 E
qustps.v φ V = Base R
qustps.e φ E W
qustps.r φ R TopSp
Assertion qustps φ U TopSp

Proof

Step Hyp Ref Expression
1 qustps.u φ U = R / 𝑠 E
2 qustps.v φ V = Base R
3 qustps.e φ E W
4 qustps.r φ R TopSp
5 eqid x V x E = x V x E
6 1 2 5 3 4 qusval φ U = x V x E 𝑠 R
7 1 2 5 3 4 quslem φ x V x E : V onto V / E
8 6 2 7 4 imastps φ U TopSp