Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
|
2 |
|
eqgvscpbl.e |
|
3 |
|
eqgvscpbl.s |
|
4 |
|
eqgvscpbl.p |
|
5 |
|
eqgvscpbl.m |
|
6 |
|
eqgvscpbl.g |
|
7 |
|
eqgvscpbl.k |
|
8 |
|
qusvsval.n |
|
9 |
|
qusvsval.m |
|
10 |
|
qusvsval.x |
|
11 |
8
|
a1i |
|
12 |
1
|
a1i |
|
13 |
|
eqid |
|
14 |
|
ovex |
|
15 |
14
|
a1i |
|
16 |
11 12 13 15 5
|
qusval |
|
17 |
11 12 13 15 5
|
quslem |
|
18 |
|
eqid |
|
19 |
5
|
adantr |
|
20 |
6
|
adantr |
|
21 |
|
simpr1 |
|
22 |
|
simpr2 |
|
23 |
|
simpr3 |
|
24 |
1 2 3 4 19 20 21 8 9 13 22 23
|
qusvscpbl |
|
25 |
16 12 17 5 18 3 4 9 24
|
imasvscaval |
|
26 |
7 10 25
|
mpd3an23 |
|
27 |
|
eceq1 |
|
28 |
|
ecexg |
|
29 |
14 28
|
ax-mp |
|
30 |
27 13 29
|
fvmpt |
|
31 |
10 30
|
syl |
|
32 |
31
|
oveq2d |
|
33 |
1 18 4 3
|
lmodvscl |
|
34 |
5 7 10 33
|
syl3anc |
|
35 |
|
eceq1 |
|
36 |
|
ecexg |
|
37 |
14 36
|
ax-mp |
|
38 |
35 13 37
|
fvmpt |
|
39 |
34 38
|
syl |
|
40 |
26 32 39
|
3eqtr3d |
|