Metamath Proof Explorer


Theorem qusvsval

Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B = Base M
eqgvscpbl.e ˙ = M ~ QG G
eqgvscpbl.s S = Base Scalar M
eqgvscpbl.p · ˙ = M
eqgvscpbl.m φ M LMod
eqgvscpbl.g φ G LSubSp M
eqgvscpbl.k φ K S
qusvsval.n N = M / 𝑠 M ~ QG G
qusvsval.m ˙ = N
qusvsval.x φ X B
Assertion qusvsval φ K ˙ X M ~ QG G = K · ˙ X M ~ QG G

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B = Base M
2 eqgvscpbl.e ˙ = M ~ QG G
3 eqgvscpbl.s S = Base Scalar M
4 eqgvscpbl.p · ˙ = M
5 eqgvscpbl.m φ M LMod
6 eqgvscpbl.g φ G LSubSp M
7 eqgvscpbl.k φ K S
8 qusvsval.n N = M / 𝑠 M ~ QG G
9 qusvsval.m ˙ = N
10 qusvsval.x φ X B
11 8 a1i φ N = M / 𝑠 M ~ QG G
12 1 a1i φ B = Base M
13 eqid x B x M ~ QG G = x B x M ~ QG G
14 ovex M ~ QG G V
15 14 a1i φ M ~ QG G V
16 11 12 13 15 5 qusval φ N = x B x M ~ QG G 𝑠 M
17 11 12 13 15 5 quslem φ x B x M ~ QG G : B onto B / M ~ QG G
18 eqid Scalar M = Scalar M
19 5 adantr φ k S u B v B M LMod
20 6 adantr φ k S u B v B G LSubSp M
21 simpr1 φ k S u B v B k S
22 simpr2 φ k S u B v B u B
23 simpr3 φ k S u B v B v B
24 1 2 3 4 19 20 21 8 9 13 22 23 qusvscpbl φ k S u B v B x B x M ~ QG G u = x B x M ~ QG G v x B x M ~ QG G k · ˙ u = x B x M ~ QG G k · ˙ v
25 16 12 17 5 18 3 4 9 24 imasvscaval φ K S X B K ˙ x B x M ~ QG G X = x B x M ~ QG G K · ˙ X
26 7 10 25 mpd3an23 φ K ˙ x B x M ~ QG G X = x B x M ~ QG G K · ˙ X
27 eceq1 x = X x M ~ QG G = X M ~ QG G
28 ecexg M ~ QG G V X M ~ QG G V
29 14 28 ax-mp X M ~ QG G V
30 27 13 29 fvmpt X B x B x M ~ QG G X = X M ~ QG G
31 10 30 syl φ x B x M ~ QG G X = X M ~ QG G
32 31 oveq2d φ K ˙ x B x M ~ QG G X = K ˙ X M ~ QG G
33 1 18 4 3 lmodvscl M LMod K S X B K · ˙ X B
34 5 7 10 33 syl3anc φ K · ˙ X B
35 eceq1 x = K · ˙ X x M ~ QG G = K · ˙ X M ~ QG G
36 ecexg M ~ QG G V K · ˙ X M ~ QG G V
37 14 36 ax-mp K · ˙ X M ~ QG G V
38 35 13 37 fvmpt K · ˙ X B x B x M ~ QG G K · ˙ X = K · ˙ X M ~ QG G
39 34 38 syl φ x B x M ~ QG G K · ˙ X = K · ˙ X M ~ QG G
40 26 32 39 3eqtr3d φ K ˙ X M ~ QG G = K · ˙ X M ~ QG G