Metamath Proof Explorer


Theorem r19.12sn

Description: Special case of r19.12 where its converse holds. (Contributed by NM, 19-May-2008) (Revised by Mario Carneiro, 23-Apr-2015) (Revised by BJ, 18-Mar-2020)

Ref Expression
Assertion r19.12sn A V x A y B φ y B x A φ

Proof

Step Hyp Ref Expression
1 sbcralg A V [˙A / x]˙ y B φ y B [˙A / x]˙ φ
2 rexsns x A y B φ [˙A / x]˙ y B φ
3 rexsns x A φ [˙A / x]˙ φ
4 3 ralbii y B x A φ y B [˙A / x]˙ φ
5 1 2 4 3bitr4g A V x A y B φ y B x A φ