Metamath Proof Explorer


Theorem r19.21t

Description: Restricted quantifier version of 19.21t ; closed form of r19.21 . (Contributed by NM, 1-Mar-2008) (Proof shortened by Wolf Lammen, 2-Jan-2020)

Ref Expression
Assertion r19.21t x φ x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 19.21t x φ x φ x A ψ φ x x A ψ
2 df-ral x A φ ψ x x A φ ψ
3 bi2.04 x A φ ψ φ x A ψ
4 3 albii x x A φ ψ x φ x A ψ
5 2 4 bitri x A φ ψ x φ x A ψ
6 df-ral x A ψ x x A ψ
7 6 imbi2i φ x A ψ φ x x A ψ
8 1 5 7 3bitr4g x φ x A φ ψ φ x A ψ