Metamath Proof Explorer


Theorem r19.21v

Description: Restricted quantifier version of 19.21v . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020)

Ref Expression
Assertion r19.21v x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 bi2.04 x A φ ψ φ x A ψ
2 1 albii x x A φ ψ x φ x A ψ
3 19.21v x φ x A ψ φ x x A ψ
4 2 3 bitri x x A φ ψ φ x x A ψ
5 df-ral x A φ ψ x x A φ ψ
6 df-ral x A ψ x x A ψ
7 6 imbi2i φ x A ψ φ x x A ψ
8 4 5 7 3bitr4i x A φ ψ φ x A ψ