Metamath Proof Explorer


Theorem r19.23

Description: Restricted quantifier version of 19.23 . See r19.23v for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypothesis r19.23.1 x ψ
Assertion r19.23 x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.23.1 x ψ
2 r19.23t x ψ x A φ ψ x A φ ψ
3 1 2 ax-mp x A φ ψ x A φ ψ