Metamath Proof Explorer


Theorem r19.23t

Description: Closed theorem form of r19.23 . (Contributed by NM, 4-Mar-2013) (Revised by Mario Carneiro, 8-Oct-2016)

Ref Expression
Assertion r19.23t x ψ x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 19.23t x ψ x x A φ ψ x x A φ ψ
2 df-ral x A φ ψ x x A φ ψ
3 impexp x A φ ψ x A φ ψ
4 3 albii x x A φ ψ x x A φ ψ
5 2 4 bitr4i x A φ ψ x x A φ ψ
6 df-rex x A φ x x A φ
7 6 imbi1i x A φ ψ x x A φ ψ
8 1 5 7 3bitr4g x ψ x A φ ψ x A φ ψ