Metamath Proof Explorer


Theorem r19.23v

Description: Restricted quantifier version of 19.23v . Version of r19.23 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)

Ref Expression
Assertion r19.23v x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 con34b φ ψ ¬ ψ ¬ φ
2 1 ralbii x A φ ψ x A ¬ ψ ¬ φ
3 r19.21v x A ¬ ψ ¬ φ ¬ ψ x A ¬ φ
4 dfrex2 x A φ ¬ x A ¬ φ
5 4 imbi1i x A φ ψ ¬ x A ¬ φ ψ
6 con1b ¬ x A ¬ φ ψ ¬ ψ x A ¬ φ
7 5 6 bitr2i ¬ ψ x A ¬ φ x A φ ψ
8 2 3 7 3bitri x A φ ψ x A φ ψ