Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r19.26-3
Next ⟩
r19.26m
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.26-3
Description:
Version of
r19.26
with three quantifiers.
(Contributed by
FL
, 22-Nov-2010)
Ref
Expression
Assertion
r19.26-3
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
Proof
Step
Hyp
Ref
Expression
1
df-3an
⊢
φ
∧
ψ
∧
χ
↔
φ
∧
ψ
∧
χ
2
1
ralbii
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
ψ
∧
χ
3
r19.26
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
ψ
∧
∀
x
∈
A
χ
4
r19.26
⊢
∀
x
∈
A
φ
∧
ψ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
5
4
anbi1i
⊢
∀
x
∈
A
φ
∧
ψ
∧
∀
x
∈
A
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
6
df-3an
⊢
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
7
5
6
bitr4i
⊢
∀
x
∈
A
φ
∧
ψ
∧
∀
x
∈
A
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ
8
2
3
7
3bitri
⊢
∀
x
∈
A
φ
∧
ψ
∧
χ
↔
∀
x
∈
A
φ
∧
∀
x
∈
A
ψ
∧
∀
x
∈
A
χ