Metamath Proof Explorer


Theorem r19.26-3

Description: Version of r19.26 with three quantifiers. (Contributed by FL, 22-Nov-2010)

Ref Expression
Assertion r19.26-3 x A φ ψ χ x A φ x A ψ x A χ

Proof

Step Hyp Ref Expression
1 df-3an φ ψ χ φ ψ χ
2 1 ralbii x A φ ψ χ x A φ ψ χ
3 r19.26 x A φ ψ χ x A φ ψ x A χ
4 r19.26 x A φ ψ x A φ x A ψ
5 4 anbi1i x A φ ψ x A χ x A φ x A ψ x A χ
6 df-3an x A φ x A ψ x A χ x A φ x A ψ x A χ
7 5 6 bitr4i x A φ ψ x A χ x A φ x A ψ x A χ
8 2 3 7 3bitri x A φ ψ χ x A φ x A ψ x A χ