Metamath Proof Explorer


Theorem r19.28zf

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses r19.28zf.1 x φ
r19.28zf.2 _ x A
Assertion r19.28zf A x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.28zf.1 x φ
2 r19.28zf.2 _ x A
3 r19.26 x A φ ψ x A φ x A ψ
4 1 2 r19.3rzf A φ x A φ
5 4 anbi1d A φ x A ψ x A φ x A ψ
6 3 5 bitr4id A x A φ ψ φ x A ψ