Metamath Proof Explorer


Theorem r19.29af

Description: A commonly used pattern based on r19.29 . See r19.29a , r19.29an for a variant when x is disjoint from ph . (Contributed by Thierry Arnoux, 29-Nov-2017)

Ref Expression
Hypotheses r19.29af.0 x φ
r19.29af.1 φ x A ψ χ
r19.29af.2 φ x A ψ
Assertion r19.29af φ χ

Proof

Step Hyp Ref Expression
1 r19.29af.0 x φ
2 r19.29af.1 φ x A ψ χ
3 r19.29af.2 φ x A ψ
4 nfv x χ
5 1 4 2 3 r19.29af2 φ χ