Metamath Proof Explorer


Theorem r19.29af2

Description: A commonly used pattern based on r19.29 . (Contributed by Thierry Arnoux, 17-Dec-2017) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses r19.29af2.p x φ
r19.29af2.c x χ
r19.29af2.1 φ x A ψ χ
r19.29af2.2 φ x A ψ
Assertion r19.29af2 φ χ

Proof

Step Hyp Ref Expression
1 r19.29af2.p x φ
2 r19.29af2.c x χ
3 r19.29af2.1 φ x A ψ χ
4 r19.29af2.2 φ x A ψ
5 3 exp31 φ x A ψ χ
6 1 2 5 rexlimd φ x A ψ χ
7 4 6 mpd φ χ