Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r x A φ x A ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.29 x A ψ x A φ x A ψ φ
2 1 ancoms x A φ x A ψ x A ψ φ
3 pm3.22 ψ φ φ ψ
4 3 reximi x A ψ φ x A φ ψ
5 2 4 syl x A φ x A ψ x A φ ψ