Metamath Proof Explorer


Theorem r19.29uz

Description: A version of 19.29 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypothesis rexuz3.1 Z = M
Assertion r19.29uz k Z φ j Z k j ψ j Z k j φ ψ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z = M
2 1 uztrn2 j Z k j k Z
3 2 ex j Z k j k Z
4 pm3.2 φ ψ φ ψ
5 4 a1i j Z φ ψ φ ψ
6 3 5 imim12d j Z k Z φ k j ψ φ ψ
7 6 ralimdv2 j Z k Z φ k j ψ φ ψ
8 7 impcom k Z φ j Z k j ψ φ ψ
9 ralim k j ψ φ ψ k j ψ k j φ ψ
10 8 9 syl k Z φ j Z k j ψ k j φ ψ
11 10 reximdva k Z φ j Z k j ψ j Z k j φ ψ
12 11 imp k Z φ j Z k j ψ j Z k j φ ψ