Metamath Proof Explorer


Theorem r19.29vva

Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypotheses r19.29vva.1 φ x A y B ψ χ
r19.29vva.2 φ x A y B ψ
Assertion r19.29vva φ χ

Proof

Step Hyp Ref Expression
1 r19.29vva.1 φ x A y B ψ χ
2 r19.29vva.2 φ x A y B ψ
3 1 2 reximddv2 φ x A y B χ
4 idd x A y B χ χ
5 4 rexlimivv x A y B χ χ
6 3 5 syl φ χ