Metamath Proof Explorer


Theorem r19.29vvaOLD

Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses r19.29vva.1 φ x A y B ψ χ
r19.29vva.2 φ x A y B ψ
Assertion r19.29vvaOLD φ χ

Proof

Step Hyp Ref Expression
1 r19.29vva.1 φ x A y B ψ χ
2 r19.29vva.2 φ x A y B ψ
3 1 2 reximddv2 φ x A y B χ
4 id χ χ
5 4 rexlimivw y B χ χ
6 5 reximi x A y B χ x A χ
7 4 rexlimivw x A χ χ
8 3 6 7 3syl φ χ