Metamath Proof Explorer


Theorem r19.2uz

Description: A version of r19.2z for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014)

Ref Expression
Hypothesis rexuz3.1 Z = M
Assertion r19.2uz j Z k j φ k Z φ

Proof

Step Hyp Ref Expression
1 rexuz3.1 Z = M
2 eluzelz j M j
3 uzid j j j
4 ne0i j j j
5 2 3 4 3syl j M j
6 5 1 eleq2s j Z j
7 r19.2z j k j φ k j φ
8 6 7 sylan j Z k j φ k j φ
9 1 uztrn2 j Z k j k Z
10 9 ex j Z k j k Z
11 10 anim1d j Z k j φ k Z φ
12 11 reximdv2 j Z k j φ k Z φ
13 12 imp j Z k j φ k Z φ
14 8 13 syldan j Z k j φ k Z φ
15 14 rexlimiva j Z k j φ k Z φ