Metamath Proof Explorer


Theorem r19.2z

Description: Theorem 19.2 of Margaris p. 89 with restricted quantifiers (compare 19.2 ). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003)

Ref Expression
Assertion r19.2z A x A φ x A φ

Proof

Step Hyp Ref Expression
1 df-ral x A φ x x A φ
2 exintr x x A φ x x A x x A φ
3 1 2 sylbi x A φ x x A x x A φ
4 n0 A x x A
5 df-rex x A φ x x A φ
6 3 4 5 3imtr4g x A φ A x A φ
7 6 impcom A x A φ x A φ