Metamath Proof Explorer


Theorem r19.2zb

Description: A response to the notion that the condition A =/= (/) can be removed in r19.2z . Interestingly enough, ph does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009)

Ref Expression
Assertion r19.2zb A x A φ x A φ

Proof

Step Hyp Ref Expression
1 r19.2z A x A φ x A φ
2 1 ex A x A φ x A φ
3 noel ¬ x
4 3 pm2.21i x φ
5 4 rgen x φ
6 raleq A = x A φ x φ
7 5 6 mpbiri A = x A φ
8 7 necon3bi ¬ x A φ A
9 exsimpl x x A φ x x A
10 df-rex x A φ x x A φ
11 n0 A x x A
12 9 10 11 3imtr4i x A φ A
13 8 12 ja x A φ x A φ A
14 2 13 impbii A x A φ x A φ