Metamath Proof Explorer


Theorem r19.30

Description: Restricted quantifier version of 19.30 . (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 5-Nov-2024)

Ref Expression
Assertion r19.30 x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 pm2.53 φ ψ ¬ φ ψ
2 1 ralimi x A φ ψ x A ¬ φ ψ
3 rexnal x A ¬ φ ¬ x A φ
4 3 biimpri ¬ x A φ x A ¬ φ
5 rexim x A ¬ φ ψ x A ¬ φ x A ψ
6 2 4 5 syl2im x A φ ψ ¬ x A φ x A ψ
7 6 orrd x A φ ψ x A φ x A ψ