Metamath Proof Explorer


Theorem r19.30OLD

Description: Obsolete version of 19.30 as of 5-Nov-2024. (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 18-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.30OLD x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 pm2.53 ψ φ ¬ ψ φ
2 1 orcoms φ ψ ¬ ψ φ
3 2 ralimi x A φ ψ x A ¬ ψ φ
4 ralim x A ¬ ψ φ x A ¬ ψ x A φ
5 ralnex x A ¬ ψ ¬ x A ψ
6 5 biimpri ¬ x A ψ x A ¬ ψ
7 6 imim1i x A ¬ ψ x A φ ¬ x A ψ x A φ
8 7 orrd x A ¬ ψ x A φ x A ψ x A φ
9 8 orcomd x A ¬ ψ x A φ x A φ x A ψ
10 3 4 9 3syl x A φ ψ x A φ x A ψ