Metamath Proof Explorer


Theorem r19.32v

Description: Restricted quantifier version of 19.32v . (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion r19.32v x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.21v x A ¬ φ ψ ¬ φ x A ψ
2 df-or φ ψ ¬ φ ψ
3 2 ralbii x A φ ψ x A ¬ φ ψ
4 df-or φ x A ψ ¬ φ x A ψ
5 1 3 4 3bitr4i x A φ ψ φ x A ψ