Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r19.32v
Next ⟩
r19.35
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.32v
Description:
Restricted quantifier version of
19.32v
.
(Contributed by
NM
, 25-Nov-2003)
Ref
Expression
Assertion
r19.32v
⊢
∀
x
∈
A
φ
∨
ψ
↔
φ
∨
∀
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
r19.21v
⊢
∀
x
∈
A
¬
φ
→
ψ
↔
¬
φ
→
∀
x
∈
A
ψ
2
df-or
⊢
φ
∨
ψ
↔
¬
φ
→
ψ
3
2
ralbii
⊢
∀
x
∈
A
φ
∨
ψ
↔
∀
x
∈
A
¬
φ
→
ψ
4
df-or
⊢
φ
∨
∀
x
∈
A
ψ
↔
¬
φ
→
∀
x
∈
A
ψ
5
1
3
4
3bitr4i
⊢
∀
x
∈
A
φ
∨
ψ
↔
φ
∨
∀
x
∈
A
ψ