Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r19.35
Next ⟩
r19.36v
Metamath Proof Explorer
Ascii
Unicode
Theorem
r19.35
Description:
Restricted quantifier version of
19.35
.
(Contributed by
NM
, 20-Sep-2003)
Ref
Expression
Assertion
r19.35
⊢
∃
x
∈
A
φ
→
ψ
↔
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
pm2.27
⊢
φ
→
φ
→
ψ
→
ψ
2
1
ralimi
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
φ
→
ψ
→
ψ
3
rexim
⊢
∀
x
∈
A
φ
→
ψ
→
ψ
→
∃
x
∈
A
φ
→
ψ
→
∃
x
∈
A
ψ
4
2
3
syl
⊢
∀
x
∈
A
φ
→
∃
x
∈
A
φ
→
ψ
→
∃
x
∈
A
ψ
5
4
com12
⊢
∃
x
∈
A
φ
→
ψ
→
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
6
rexnal
⊢
∃
x
∈
A
¬
φ
↔
¬
∀
x
∈
A
φ
7
pm2.21
⊢
¬
φ
→
φ
→
ψ
8
7
reximi
⊢
∃
x
∈
A
¬
φ
→
∃
x
∈
A
φ
→
ψ
9
6
8
sylbir
⊢
¬
∀
x
∈
A
φ
→
∃
x
∈
A
φ
→
ψ
10
ax-1
⊢
ψ
→
φ
→
ψ
11
10
reximi
⊢
∃
x
∈
A
ψ
→
∃
x
∈
A
φ
→
ψ
12
9
11
ja
⊢
∀
x
∈
A
φ
→
∃
x
∈
A
ψ
→
∃
x
∈
A
φ
→
ψ
13
5
12
impbii
⊢
∃
x
∈
A
φ
→
ψ
↔
∀
x
∈
A
φ
→
∃
x
∈
A
ψ