Metamath Proof Explorer


Theorem r19.35

Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion r19.35 x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 pm2.27 φ φ ψ ψ
2 1 ralimi x A φ x A φ ψ ψ
3 rexim x A φ ψ ψ x A φ ψ x A ψ
4 2 3 syl x A φ x A φ ψ x A ψ
5 4 com12 x A φ ψ x A φ x A ψ
6 rexnal x A ¬ φ ¬ x A φ
7 pm2.21 ¬ φ φ ψ
8 7 reximi x A ¬ φ x A φ ψ
9 6 8 sylbir ¬ x A φ x A φ ψ
10 ax-1 ψ φ ψ
11 10 reximi x A ψ x A φ ψ
12 9 11 ja x A φ x A ψ x A φ ψ
13 5 12 impbii x A φ ψ x A φ x A ψ