Metamath Proof Explorer


Theorem r19.37v

Description: Restricted quantifier version of one direction of 19.37v . (The other direction holds iff A is nonempty, see r19.37zv .) (Contributed by NM, 2-Apr-2004) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023)

Ref Expression
Assertion r19.37v x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 id φ φ
2 1 ralrimivw φ x A φ
3 r19.35 x A φ ψ x A φ x A ψ
4 3 biimpi x A φ ψ x A φ x A ψ
5 2 4 syl5 x A φ ψ φ x A ψ