Metamath Proof Explorer


Theorem r19.37zv

Description: Restricted quantifier version of Theorem 19.37 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007)

Ref Expression
Assertion r19.37zv A x A φ ψ φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.35 x A φ ψ x A φ x A ψ
2 r19.3rzv A φ x A φ
3 2 imbi1d A φ x A ψ x A φ x A ψ
4 1 3 bitr4id A x A φ ψ φ x A ψ