Metamath Proof Explorer


Theorem r19.3rzf

Description: Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses r19.3rzf.1 x φ
r19.3rzf.2 _ x A
Assertion r19.3rzf A φ x A φ

Proof

Step Hyp Ref Expression
1 r19.3rzf.1 x φ
2 r19.3rzf.2 _ x A
3 2 n0f A x x A
4 biimt x x A φ x x A φ
5 3 4 sylbi A φ x x A φ
6 df-ral x A φ x x A φ
7 1 19.23 x x A φ x x A φ
8 6 7 bitri x A φ x x A φ
9 5 8 bitr4di A φ x A φ