Metamath Proof Explorer


Theorem r19.41v

Description: Restricted quantifier version 19.41v . Version of r19.41 with a disjoint variable condition, requiring fewer axioms. (Contributed by NM, 17-Dec-2003) Reduce dependencies on axioms. (Revised by BJ, 29-Mar-2020)

Ref Expression
Assertion r19.41v x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 anass x A φ ψ x A φ ψ
2 1 exbii x x A φ ψ x x A φ ψ
3 19.41v x x A φ ψ x x A φ ψ
4 2 3 bitr3i x x A φ ψ x x A φ ψ
5 df-rex x A φ ψ x x A φ ψ
6 df-rex x A φ x x A φ
7 6 anbi1i x A φ ψ x x A φ ψ
8 4 5 7 3bitr4i x A φ ψ x A φ ψ