Metamath Proof Explorer


Theorem r19.43

Description: Restricted quantifier version of 19.43 . (Contributed by NM, 27-May-1998) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.43 x A φ ψ x A φ x A ψ

Proof

Step Hyp Ref Expression
1 r19.35 x A ¬ φ ψ x A ¬ φ x A ψ
2 df-or φ ψ ¬ φ ψ
3 2 rexbii x A φ ψ x A ¬ φ ψ
4 df-or x A φ x A ψ ¬ x A φ x A ψ
5 ralnex x A ¬ φ ¬ x A φ
6 5 imbi1i x A ¬ φ x A ψ ¬ x A φ x A ψ
7 4 6 bitr4i x A φ x A ψ x A ¬ φ x A ψ
8 1 3 7 3bitr4i x A φ ψ x A φ x A ψ