Metamath Proof Explorer


Theorem r19.44v

Description: One direction of a restricted quantifier version of 19.44 . The other direction holds when A is nonempty, see r19.44zv . (Contributed by NM, 2-Apr-2004)

Ref Expression
Assertion r19.44v x A φ ψ x A φ ψ

Proof

Step Hyp Ref Expression
1 r19.43 x A φ ψ x A φ x A ψ
2 id ψ ψ
3 2 rexlimivw x A ψ ψ
4 3 orim2i x A φ x A ψ x A φ ψ
5 1 4 sylbi x A φ ψ x A φ ψ