Metamath Proof Explorer


Theorem r19.9rzv

Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998)

Ref Expression
Assertion r19.9rzv A φ x A φ

Proof

Step Hyp Ref Expression
1 dfrex2 x A φ ¬ x A ¬ φ
2 r19.3rzv A ¬ φ x A ¬ φ
3 2 con1bid A ¬ x A ¬ φ φ
4 1 3 bitr2id A φ x A φ