Metamath Proof Explorer


Theorem r1elss

Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypothesis r1elss.1 A V
Assertion r1elss A R1 On A R1 On

Proof

Step Hyp Ref Expression
1 r1elss.1 A V
2 r1elssi A R1 On A R1 On
3 1 tz9.12 y A x On y R1 x x On A R1 x
4 dfss3 A R1 On y A y R1 On
5 r1fnon R1 Fn On
6 fnfun R1 Fn On Fun R1
7 funiunfv Fun R1 x On R1 x = R1 On
8 5 6 7 mp2b x On R1 x = R1 On
9 8 eleq2i y x On R1 x y R1 On
10 eliun y x On R1 x x On y R1 x
11 9 10 bitr3i y R1 On x On y R1 x
12 11 ralbii y A y R1 On y A x On y R1 x
13 4 12 bitri A R1 On y A x On y R1 x
14 8 eleq2i A x On R1 x A R1 On
15 eliun A x On R1 x x On A R1 x
16 14 15 bitr3i A R1 On x On A R1 x
17 3 13 16 3imtr4i A R1 On A R1 On
18 2 17 impbii A R1 On A R1 On