Metamath Proof Explorer


Theorem r1elssi

Description: The range of the R1 function is transitive. Lemma 2.10 of Kunen p. 97. One direction of r1elss that doesn't need A to be a set. (Contributed by Mario Carneiro, 22-Mar-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1elssi A R1 On A R1 On

Proof

Step Hyp Ref Expression
1 triun x On Tr R1 x Tr x On R1 x
2 r1tr Tr R1 x
3 2 a1i x On Tr R1 x
4 1 3 mprg Tr x On R1 x
5 r1funlim Fun R1 Lim dom R1
6 5 simpli Fun R1
7 funiunfv Fun R1 x On R1 x = R1 On
8 6 7 ax-mp x On R1 x = R1 On
9 treq x On R1 x = R1 On Tr x On R1 x Tr R1 On
10 8 9 ax-mp Tr x On R1 x Tr R1 On
11 4 10 mpbi Tr R1 On
12 trss Tr R1 On A R1 On A R1 On
13 11 12 ax-mp A R1 On A R1 On