Metamath Proof Explorer


Theorem r1fin

Description: The first _om levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013)

Ref Expression
Assertion r1fin A ω R1 A Fin

Proof

Step Hyp Ref Expression
1 fveq2 n = R1 n = R1
2 1 eleq1d n = R1 n Fin R1 Fin
3 fveq2 n = m R1 n = R1 m
4 3 eleq1d n = m R1 n Fin R1 m Fin
5 fveq2 n = suc m R1 n = R1 suc m
6 5 eleq1d n = suc m R1 n Fin R1 suc m Fin
7 fveq2 n = A R1 n = R1 A
8 7 eleq1d n = A R1 n Fin R1 A Fin
9 r10 R1 =
10 0fin Fin
11 9 10 eqeltri R1 Fin
12 pwfi R1 m Fin 𝒫 R1 m Fin
13 r1funlim Fun R1 Lim dom R1
14 13 simpri Lim dom R1
15 limomss Lim dom R1 ω dom R1
16 14 15 ax-mp ω dom R1
17 16 sseli m ω m dom R1
18 r1sucg m dom R1 R1 suc m = 𝒫 R1 m
19 17 18 syl m ω R1 suc m = 𝒫 R1 m
20 19 eleq1d m ω R1 suc m Fin 𝒫 R1 m Fin
21 12 20 bitr4id m ω R1 m Fin R1 suc m Fin
22 21 biimpd m ω R1 m Fin R1 suc m Fin
23 2 4 6 8 11 22 finds A ω R1 A Fin