Metamath Proof Explorer


Theorem r1funlim

Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon avoids ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1funlim Fun R1 Lim dom R1

Proof

Step Hyp Ref Expression
1 rdgfun Fun rec x V 𝒫 x
2 df-r1 R1 = rec x V 𝒫 x
3 2 funeqi Fun R1 Fun rec x V 𝒫 x
4 1 3 mpbir Fun R1
5 rdgdmlim Lim dom rec x V 𝒫 x
6 2 dmeqi dom R1 = dom rec x V 𝒫 x
7 limeq dom R1 = dom rec x V 𝒫 x Lim dom R1 Lim dom rec x V 𝒫 x
8 6 7 ax-mp Lim dom R1 Lim dom rec x V 𝒫 x
9 5 8 mpbir Lim dom R1
10 4 9 pm3.2i Fun R1 Lim dom R1