Metamath Proof Explorer


Theorem r1lim

Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1lim ABLimAR1A=xAR1x

Proof

Step Hyp Ref Expression
1 limelon ABLimAAOn
2 r1fnon R1FnOn
3 fndm R1FnOndomR1=On
4 2 3 ax-mp domR1=On
5 1 4 eleqtrrdi ABLimAAdomR1
6 r1limg AdomR1LimAR1A=xAR1x
7 5 6 sylancom ABLimAR1A=xAR1x