Metamath Proof Explorer


Theorem r1limg

Description: Value of the cumulative hierarchy of sets function at a limit ordinal. Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1limg A dom R1 Lim A R1 A = x A R1 x

Proof

Step Hyp Ref Expression
1 df-r1 R1 = rec y V 𝒫 y
2 1 dmeqi dom R1 = dom rec y V 𝒫 y
3 2 eleq2i A dom R1 A dom rec y V 𝒫 y
4 rdglimg A dom rec y V 𝒫 y Lim A rec y V 𝒫 y A = rec y V 𝒫 y A
5 3 4 sylanb A dom R1 Lim A rec y V 𝒫 y A = rec y V 𝒫 y A
6 1 fveq1i R1 A = rec y V 𝒫 y A
7 r1funlim Fun R1 Lim dom R1
8 7 simpli Fun R1
9 funiunfv Fun R1 x A R1 x = R1 A
10 8 9 ax-mp x A R1 x = R1 A
11 1 imaeq1i R1 A = rec y V 𝒫 y A
12 11 unieqi R1 A = rec y V 𝒫 y A
13 10 12 eqtri x A R1 x = rec y V 𝒫 y A
14 5 6 13 3eqtr4g A dom R1 Lim A R1 A = x A R1 x