Metamath Proof Explorer


Theorem r1limwun

Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion r1limwun A V Lim A R1 A WUni

Proof

Step Hyp Ref Expression
1 r1tr Tr R1 A
2 1 a1i A V Lim A Tr R1 A
3 limelon A V Lim A A On
4 r1fnon R1 Fn On
5 4 fndmi dom R1 = On
6 3 5 eleqtrrdi A V Lim A A dom R1
7 onssr1 A dom R1 A R1 A
8 6 7 syl A V Lim A A R1 A
9 0ellim Lim A A
10 9 adantl A V Lim A A
11 8 10 sseldd A V Lim A R1 A
12 11 ne0d A V Lim A R1 A
13 rankuni rank x = rank x
14 rankon rank x On
15 eloni rank x On Ord rank x
16 orduniss Ord rank x rank x rank x
17 14 15 16 mp2b rank x rank x
18 17 a1i A V Lim A x R1 A rank x rank x
19 rankr1ai x R1 A rank x A
20 19 adantl A V Lim A x R1 A rank x A
21 onuni rank x On rank x On
22 14 21 ax-mp rank x On
23 3 adantr A V Lim A x R1 A A On
24 ontr2 rank x On A On rank x rank x rank x A rank x A
25 22 23 24 sylancr A V Lim A x R1 A rank x rank x rank x A rank x A
26 18 20 25 mp2and A V Lim A x R1 A rank x A
27 13 26 eqeltrid A V Lim A x R1 A rank x A
28 r1elwf x R1 A x R1 On
29 28 adantl A V Lim A x R1 A x R1 On
30 uniwf x R1 On x R1 On
31 29 30 sylib A V Lim A x R1 A x R1 On
32 6 adantr A V Lim A x R1 A A dom R1
33 rankr1ag x R1 On A dom R1 x R1 A rank x A
34 31 32 33 syl2anc A V Lim A x R1 A x R1 A rank x A
35 27 34 mpbird A V Lim A x R1 A x R1 A
36 r1pwcl Lim A x R1 A 𝒫 x R1 A
37 36 adantl A V Lim A x R1 A 𝒫 x R1 A
38 37 biimpa A V Lim A x R1 A 𝒫 x R1 A
39 28 ad2antlr A V Lim A x R1 A y R1 A x R1 On
40 r1elwf y R1 A y R1 On
41 40 adantl A V Lim A x R1 A y R1 A y R1 On
42 rankprb x R1 On y R1 On rank x y = suc rank x rank y
43 39 41 42 syl2anc A V Lim A x R1 A y R1 A rank x y = suc rank x rank y
44 limord Lim A Ord A
45 44 ad3antlr A V Lim A x R1 A y R1 A Ord A
46 20 adantr A V Lim A x R1 A y R1 A rank x A
47 rankr1ai y R1 A rank y A
48 47 adantl A V Lim A x R1 A y R1 A rank y A
49 ordunel Ord A rank x A rank y A rank x rank y A
50 45 46 48 49 syl3anc A V Lim A x R1 A y R1 A rank x rank y A
51 limsuc Lim A rank x rank y A suc rank x rank y A
52 51 ad3antlr A V Lim A x R1 A y R1 A rank x rank y A suc rank x rank y A
53 50 52 mpbid A V Lim A x R1 A y R1 A suc rank x rank y A
54 43 53 eqeltrd A V Lim A x R1 A y R1 A rank x y A
55 prwf x R1 On y R1 On x y R1 On
56 39 41 55 syl2anc A V Lim A x R1 A y R1 A x y R1 On
57 32 adantr A V Lim A x R1 A y R1 A A dom R1
58 rankr1ag x y R1 On A dom R1 x y R1 A rank x y A
59 56 57 58 syl2anc A V Lim A x R1 A y R1 A x y R1 A rank x y A
60 54 59 mpbird A V Lim A x R1 A y R1 A x y R1 A
61 60 ralrimiva A V Lim A x R1 A y R1 A x y R1 A
62 35 38 61 3jca A V Lim A x R1 A x R1 A 𝒫 x R1 A y R1 A x y R1 A
63 62 ralrimiva A V Lim A x R1 A x R1 A 𝒫 x R1 A y R1 A x y R1 A
64 fvex R1 A V
65 iswun R1 A V R1 A WUni Tr R1 A R1 A x R1 A x R1 A 𝒫 x R1 A y R1 A x y R1 A
66 64 65 ax-mp R1 A WUni Tr R1 A R1 A x R1 A x R1 A 𝒫 x R1 A y R1 A x y R1 A
67 2 12 63 66 syl3anbrc A V Lim A R1 A WUni