Step |
Hyp |
Ref |
Expression |
1 |
|
r1tr |
|
2 |
1
|
a1i |
|
3 |
|
limelon |
|
4 |
|
r1fnon |
|
5 |
4
|
fndmi |
|
6 |
3 5
|
eleqtrrdi |
|
7 |
|
onssr1 |
|
8 |
6 7
|
syl |
|
9 |
|
0ellim |
|
10 |
9
|
adantl |
|
11 |
8 10
|
sseldd |
|
12 |
11
|
ne0d |
|
13 |
|
rankuni |
|
14 |
|
rankon |
|
15 |
|
eloni |
|
16 |
|
orduniss |
|
17 |
14 15 16
|
mp2b |
|
18 |
17
|
a1i |
|
19 |
|
rankr1ai |
|
20 |
19
|
adantl |
|
21 |
|
onuni |
|
22 |
14 21
|
ax-mp |
|
23 |
3
|
adantr |
|
24 |
|
ontr2 |
|
25 |
22 23 24
|
sylancr |
|
26 |
18 20 25
|
mp2and |
|
27 |
13 26
|
eqeltrid |
|
28 |
|
r1elwf |
|
29 |
28
|
adantl |
|
30 |
|
uniwf |
|
31 |
29 30
|
sylib |
|
32 |
6
|
adantr |
|
33 |
|
rankr1ag |
|
34 |
31 32 33
|
syl2anc |
|
35 |
27 34
|
mpbird |
|
36 |
|
r1pwcl |
|
37 |
36
|
adantl |
|
38 |
37
|
biimpa |
|
39 |
28
|
ad2antlr |
|
40 |
|
r1elwf |
|
41 |
40
|
adantl |
|
42 |
|
rankprb |
|
43 |
39 41 42
|
syl2anc |
|
44 |
|
limord |
|
45 |
44
|
ad3antlr |
|
46 |
20
|
adantr |
|
47 |
|
rankr1ai |
|
48 |
47
|
adantl |
|
49 |
|
ordunel |
|
50 |
45 46 48 49
|
syl3anc |
|
51 |
|
limsuc |
|
52 |
51
|
ad3antlr |
|
53 |
50 52
|
mpbid |
|
54 |
43 53
|
eqeltrd |
|
55 |
|
prwf |
|
56 |
39 41 55
|
syl2anc |
|
57 |
32
|
adantr |
|
58 |
|
rankr1ag |
|
59 |
56 57 58
|
syl2anc |
|
60 |
54 59
|
mpbird |
|
61 |
60
|
ralrimiva |
|
62 |
35 38 61
|
3jca |
|
63 |
62
|
ralrimiva |
|
64 |
|
fvex |
|
65 |
|
iswun |
|
66 |
64 65
|
ax-mp |
|
67 |
2 12 63 66
|
syl3anbrc |
|