Metamath Proof Explorer


Theorem r1ord3g

Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of BellMachover p. 478. (Contributed by NM, 22-Sep-2003)

Ref Expression
Assertion r1ord3g A dom R1 B dom R1 A B R1 A R1 B

Proof

Step Hyp Ref Expression
1 r1funlim Fun R1 Lim dom R1
2 1 simpri Lim dom R1
3 limord Lim dom R1 Ord dom R1
4 ordsson Ord dom R1 dom R1 On
5 2 3 4 mp2b dom R1 On
6 5 sseli A dom R1 A On
7 5 sseli B dom R1 B On
8 onsseleq A On B On A B A B A = B
9 6 7 8 syl2an A dom R1 B dom R1 A B A B A = B
10 r1tr Tr R1 B
11 r1ordg B dom R1 A B R1 A R1 B
12 11 adantl A dom R1 B dom R1 A B R1 A R1 B
13 trss Tr R1 B R1 A R1 B R1 A R1 B
14 10 12 13 mpsylsyld A dom R1 B dom R1 A B R1 A R1 B
15 fveq2 A = B R1 A = R1 B
16 eqimss R1 A = R1 B R1 A R1 B
17 15 16 syl A = B R1 A R1 B
18 17 a1i A dom R1 B dom R1 A = B R1 A R1 B
19 14 18 jaod A dom R1 B dom R1 A B A = B R1 A R1 B
20 9 19 sylbid A dom R1 B dom R1 A B R1 A R1 B