Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|
2 |
|
r1funlim |
|
3 |
2
|
simpri |
|
4 |
|
limord |
|
5 |
3 4
|
ax-mp |
|
6 |
|
ordsson |
|
7 |
5 6
|
ax-mp |
|
8 |
7
|
sseli |
|
9 |
1 8
|
syl |
|
10 |
|
onelon |
|
11 |
8 10
|
sylan |
|
12 |
|
suceloni |
|
13 |
11 12
|
syl |
|
14 |
|
eloni |
|
15 |
|
ordsucss |
|
16 |
14 15
|
syl |
|
17 |
16
|
imp |
|
18 |
8 17
|
sylan |
|
19 |
|
eleq1 |
|
20 |
|
fveq2 |
|
21 |
20
|
eleq2d |
|
22 |
19 21
|
imbi12d |
|
23 |
|
eleq1 |
|
24 |
|
fveq2 |
|
25 |
24
|
eleq2d |
|
26 |
23 25
|
imbi12d |
|
27 |
|
eleq1 |
|
28 |
|
fveq2 |
|
29 |
28
|
eleq2d |
|
30 |
27 29
|
imbi12d |
|
31 |
|
eleq1 |
|
32 |
|
fveq2 |
|
33 |
32
|
eleq2d |
|
34 |
31 33
|
imbi12d |
|
35 |
|
fvex |
|
36 |
35
|
pwid |
|
37 |
|
limsuc |
|
38 |
3 37
|
ax-mp |
|
39 |
|
r1sucg |
|
40 |
38 39
|
sylbir |
|
41 |
36 40
|
eleqtrrid |
|
42 |
41
|
a1i |
|
43 |
|
limsuc |
|
44 |
3 43
|
ax-mp |
|
45 |
|
r1tr |
|
46 |
|
dftr4 |
|
47 |
45 46
|
mpbi |
|
48 |
|
r1sucg |
|
49 |
47 48
|
sseqtrrid |
|
50 |
49
|
sseld |
|
51 |
50
|
a2i |
|
52 |
44 51
|
syl5bir |
|
53 |
52
|
a1i |
|
54 |
|
simprl |
|
55 |
|
simplr |
|
56 |
|
sucelon |
|
57 |
55 56
|
sylibr |
|
58 |
|
limord |
|
59 |
58
|
ad2antrr |
|
60 |
|
ordelsuc |
|
61 |
57 59 60
|
syl2anc |
|
62 |
54 61
|
mpbird |
|
63 |
|
limsuc |
|
64 |
63
|
ad2antrr |
|
65 |
62 64
|
mpbid |
|
66 |
|
simprr |
|
67 |
|
ordtr1 |
|
68 |
5 67
|
ax-mp |
|
69 |
62 66 68
|
syl2anc |
|
70 |
69 39
|
syl |
|
71 |
36 70
|
eleqtrrid |
|
72 |
|
fveq2 |
|
73 |
72
|
eleq2d |
|
74 |
73
|
rspcev |
|
75 |
65 71 74
|
syl2anc |
|
76 |
|
eliun |
|
77 |
75 76
|
sylibr |
|
78 |
|
simpll |
|
79 |
|
r1limg |
|
80 |
66 78 79
|
syl2anc |
|
81 |
77 80
|
eleqtrrd |
|
82 |
81
|
expr |
|
83 |
82
|
a1d |
|
84 |
22 26 30 34 42 53 83
|
tfindsg |
|
85 |
84
|
impr |
|
86 |
9 13 18 1 85
|
syl22anc |
|
87 |
86
|
ex |
|