| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|
| 2 |
|
r1funlim |
|
| 3 |
2
|
simpri |
|
| 4 |
|
limord |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
ordsson |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
7
|
sseli |
|
| 9 |
1 8
|
syl |
|
| 10 |
|
onelon |
|
| 11 |
8 10
|
sylan |
|
| 12 |
|
onsuc |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
eloni |
|
| 15 |
|
ordsucss |
|
| 16 |
14 15
|
syl |
|
| 17 |
16
|
imp |
|
| 18 |
8 17
|
sylan |
|
| 19 |
|
eleq1 |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
eleq2d |
|
| 22 |
19 21
|
imbi12d |
|
| 23 |
|
eleq1 |
|
| 24 |
|
fveq2 |
|
| 25 |
24
|
eleq2d |
|
| 26 |
23 25
|
imbi12d |
|
| 27 |
|
eleq1 |
|
| 28 |
|
fveq2 |
|
| 29 |
28
|
eleq2d |
|
| 30 |
27 29
|
imbi12d |
|
| 31 |
|
eleq1 |
|
| 32 |
|
fveq2 |
|
| 33 |
32
|
eleq2d |
|
| 34 |
31 33
|
imbi12d |
|
| 35 |
|
fvex |
|
| 36 |
35
|
pwid |
|
| 37 |
|
limsuc |
|
| 38 |
3 37
|
ax-mp |
|
| 39 |
|
r1sucg |
|
| 40 |
38 39
|
sylbir |
|
| 41 |
36 40
|
eleqtrrid |
|
| 42 |
41
|
a1i |
|
| 43 |
|
limsuc |
|
| 44 |
3 43
|
ax-mp |
|
| 45 |
|
r1tr |
|
| 46 |
|
dftr4 |
|
| 47 |
45 46
|
mpbi |
|
| 48 |
|
r1sucg |
|
| 49 |
47 48
|
sseqtrrid |
|
| 50 |
49
|
sseld |
|
| 51 |
50
|
a2i |
|
| 52 |
44 51
|
biimtrrid |
|
| 53 |
52
|
a1i |
|
| 54 |
|
simprl |
|
| 55 |
|
simplr |
|
| 56 |
|
onsucb |
|
| 57 |
55 56
|
sylibr |
|
| 58 |
|
limord |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
ordelsuc |
|
| 61 |
57 59 60
|
syl2anc |
|
| 62 |
54 61
|
mpbird |
|
| 63 |
|
limsuc |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
62 64
|
mpbid |
|
| 66 |
|
simprr |
|
| 67 |
|
ordtr1 |
|
| 68 |
5 67
|
ax-mp |
|
| 69 |
62 66 68
|
syl2anc |
|
| 70 |
69 39
|
syl |
|
| 71 |
36 70
|
eleqtrrid |
|
| 72 |
|
fveq2 |
|
| 73 |
72
|
eleq2d |
|
| 74 |
73
|
rspcev |
|
| 75 |
65 71 74
|
syl2anc |
|
| 76 |
|
eliun |
|
| 77 |
75 76
|
sylibr |
|
| 78 |
|
simpll |
|
| 79 |
|
r1limg |
|
| 80 |
66 78 79
|
syl2anc |
|
| 81 |
77 80
|
eleqtrrd |
|
| 82 |
81
|
expr |
|
| 83 |
82
|
a1d |
|
| 84 |
22 26 30 34 42 53 83
|
tfindsg |
|
| 85 |
84
|
impr |
|
| 86 |
9 13 18 1 85
|
syl22anc |
|
| 87 |
86
|
ex |
|