Metamath Proof Explorer


Theorem r1p0

Description: Polynomial remainder operation of a division of the zero polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P = Poly 1 R
r1padd1.u U = Base P
r1padd1.n N = Unic 1p R
r1padd1.e E = rem 1p R
r1p0.r φ R Ring
r1p0.d φ D N
r1p0.0 0 ˙ = 0 P
Assertion r1p0 φ 0 ˙ E D = 0 ˙

Proof

Step Hyp Ref Expression
1 r1padd1.p P = Poly 1 R
2 r1padd1.u U = Base P
3 r1padd1.n N = Unic 1p R
4 r1padd1.e E = rem 1p R
5 r1p0.r φ R Ring
6 r1p0.d φ D N
7 r1p0.0 0 ˙ = 0 P
8 1 ply1sca R Ring R = Scalar P
9 5 8 syl φ R = Scalar P
10 9 fveq2d φ 0 R = 0 Scalar P
11 10 oveq1d φ 0 R P 0 ˙ = 0 Scalar P P 0 ˙
12 1 ply1lmod R Ring P LMod
13 5 12 syl φ P LMod
14 1 ply1ring R Ring P Ring
15 2 7 ring0cl P Ring 0 ˙ U
16 5 14 15 3syl φ 0 ˙ U
17 eqid Scalar P = Scalar P
18 eqid P = P
19 eqid 0 Scalar P = 0 Scalar P
20 2 17 18 19 7 lmod0vs P LMod 0 ˙ U 0 Scalar P P 0 ˙ = 0 ˙
21 13 16 20 syl2anc φ 0 Scalar P P 0 ˙ = 0 ˙
22 11 21 eqtrd φ 0 R P 0 ˙ = 0 ˙
23 22 oveq1d φ 0 R P 0 ˙ E D = 0 ˙ E D
24 eqid Base R = Base R
25 eqid 0 R = 0 R
26 24 25 ring0cl R Ring 0 R Base R
27 5 26 syl φ 0 R Base R
28 1 2 3 4 5 16 6 18 24 27 r1pvsca φ 0 R P 0 ˙ E D = 0 R P 0 ˙ E D
29 10 oveq1d φ 0 R P 0 ˙ E D = 0 Scalar P P 0 ˙ E D
30 4 1 2 3 r1pcl R Ring 0 ˙ U D N 0 ˙ E D U
31 5 16 6 30 syl3anc φ 0 ˙ E D U
32 2 17 18 19 7 lmod0vs P LMod 0 ˙ E D U 0 Scalar P P 0 ˙ E D = 0 ˙
33 13 31 32 syl2anc φ 0 Scalar P P 0 ˙ E D = 0 ˙
34 28 29 33 3eqtrd φ 0 R P 0 ˙ E D = 0 ˙
35 23 34 eqtr3d φ 0 ˙ E D = 0 ˙