Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|
2 |
|
r1padd1.u |
|
3 |
|
r1padd1.n |
|
4 |
|
r1padd1.e |
|
5 |
|
r1padd1.r |
|
6 |
|
r1padd1.a |
|
7 |
|
r1padd1.d |
|
8 |
|
r1padd1.1 |
|
9 |
|
r1padd1.2 |
|
10 |
|
r1padd1.b |
|
11 |
|
r1padd1.c |
|
12 |
1 2 3
|
uc1pcl |
|
13 |
7 12
|
syl |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
eqid |
|
17 |
4 1 2 14 15 16
|
r1pval |
|
18 |
6 13 17
|
syl2anc |
|
19 |
4 1 2 14 15 16
|
r1pval |
|
20 |
10 13 19
|
syl2anc |
|
21 |
8 18 20
|
3eqtr3d |
|
22 |
21
|
oveq1d |
|
23 |
|
eqid |
|
24 |
1
|
ply1ring |
|
25 |
5 24
|
syl |
|
26 |
14 1 2 3
|
q1pcl |
|
27 |
5 6 7 26
|
syl3anc |
|
28 |
2 15 23 25 27 13
|
ringmneg1 |
|
29 |
28
|
oveq2d |
|
30 |
25
|
ringgrpd |
|
31 |
2 9 30 6 11
|
grpcld |
|
32 |
2 15 25 27 13
|
ringcld |
|
33 |
2 9 23 16
|
grpsubval |
|
34 |
31 32 33
|
syl2anc |
|
35 |
25
|
ringabld |
|
36 |
2 9 16
|
abladdsub |
|
37 |
35 6 11 32 36
|
syl13anc |
|
38 |
29 34 37
|
3eqtr2d |
|
39 |
14 1 2 3
|
q1pcl |
|
40 |
5 10 7 39
|
syl3anc |
|
41 |
2 15 23 25 40 13
|
ringmneg1 |
|
42 |
41
|
oveq2d |
|
43 |
2 9 30 10 11
|
grpcld |
|
44 |
2 15 25 40 13
|
ringcld |
|
45 |
2 9 23 16
|
grpsubval |
|
46 |
43 44 45
|
syl2anc |
|
47 |
2 9 16
|
abladdsub |
|
48 |
35 10 11 44 47
|
syl13anc |
|
49 |
42 46 48
|
3eqtr2d |
|
50 |
22 38 49
|
3eqtr4d |
|
51 |
50
|
oveq1d |
|
52 |
2 23 30 27
|
grpinvcld |
|
53 |
1 2 3 4 9 15 5 31 7 52
|
r1pcyc |
|
54 |
2 23 30 40
|
grpinvcld |
|
55 |
1 2 3 4 9 15 5 43 7 54
|
r1pcyc |
|
56 |
51 53 55
|
3eqtr3d |
|