Metamath Proof Explorer


Theorem r1padd1

Description: Addition property of the polynomial remainder operation, similar to modadd1 . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses r1padd1.p P = Poly 1 R
r1padd1.u U = Base P
r1padd1.n N = Unic 1p R
r1padd1.e E = rem 1p R
r1padd1.r φ R Ring
r1padd1.a φ A U
r1padd1.d φ D N
r1padd1.1 φ A E D = B E D
r1padd1.2 + ˙ = + P
r1padd1.b φ B U
r1padd1.c φ C U
Assertion r1padd1 φ A + ˙ C E D = B + ˙ C E D

Proof

Step Hyp Ref Expression
1 r1padd1.p P = Poly 1 R
2 r1padd1.u U = Base P
3 r1padd1.n N = Unic 1p R
4 r1padd1.e E = rem 1p R
5 r1padd1.r φ R Ring
6 r1padd1.a φ A U
7 r1padd1.d φ D N
8 r1padd1.1 φ A E D = B E D
9 r1padd1.2 + ˙ = + P
10 r1padd1.b φ B U
11 r1padd1.c φ C U
12 1 2 3 uc1pcl D N D U
13 7 12 syl φ D U
14 eqid quot 1p R = quot 1p R
15 eqid P = P
16 eqid - P = - P
17 4 1 2 14 15 16 r1pval A U D U A E D = A - P A quot 1p R D P D
18 6 13 17 syl2anc φ A E D = A - P A quot 1p R D P D
19 4 1 2 14 15 16 r1pval B U D U B E D = B - P B quot 1p R D P D
20 10 13 19 syl2anc φ B E D = B - P B quot 1p R D P D
21 8 18 20 3eqtr3d φ A - P A quot 1p R D P D = B - P B quot 1p R D P D
22 21 oveq1d φ A - P A quot 1p R D P D + ˙ C = B - P B quot 1p R D P D + ˙ C
23 eqid inv g P = inv g P
24 1 ply1ring R Ring P Ring
25 5 24 syl φ P Ring
26 14 1 2 3 q1pcl R Ring A U D N A quot 1p R D U
27 5 6 7 26 syl3anc φ A quot 1p R D U
28 2 15 23 25 27 13 ringmneg1 φ inv g P A quot 1p R D P D = inv g P A quot 1p R D P D
29 28 oveq2d φ A + ˙ C + ˙ inv g P A quot 1p R D P D = A + ˙ C + ˙ inv g P A quot 1p R D P D
30 25 ringgrpd φ P Grp
31 2 9 30 6 11 grpcld φ A + ˙ C U
32 2 15 25 27 13 ringcld φ A quot 1p R D P D U
33 2 9 23 16 grpsubval A + ˙ C U A quot 1p R D P D U A + ˙ C - P A quot 1p R D P D = A + ˙ C + ˙ inv g P A quot 1p R D P D
34 31 32 33 syl2anc φ A + ˙ C - P A quot 1p R D P D = A + ˙ C + ˙ inv g P A quot 1p R D P D
35 25 ringabld φ P Abel
36 2 9 16 abladdsub P Abel A U C U A quot 1p R D P D U A + ˙ C - P A quot 1p R D P D = A - P A quot 1p R D P D + ˙ C
37 35 6 11 32 36 syl13anc φ A + ˙ C - P A quot 1p R D P D = A - P A quot 1p R D P D + ˙ C
38 29 34 37 3eqtr2d φ A + ˙ C + ˙ inv g P A quot 1p R D P D = A - P A quot 1p R D P D + ˙ C
39 14 1 2 3 q1pcl R Ring B U D N B quot 1p R D U
40 5 10 7 39 syl3anc φ B quot 1p R D U
41 2 15 23 25 40 13 ringmneg1 φ inv g P B quot 1p R D P D = inv g P B quot 1p R D P D
42 41 oveq2d φ B + ˙ C + ˙ inv g P B quot 1p R D P D = B + ˙ C + ˙ inv g P B quot 1p R D P D
43 2 9 30 10 11 grpcld φ B + ˙ C U
44 2 15 25 40 13 ringcld φ B quot 1p R D P D U
45 2 9 23 16 grpsubval B + ˙ C U B quot 1p R D P D U B + ˙ C - P B quot 1p R D P D = B + ˙ C + ˙ inv g P B quot 1p R D P D
46 43 44 45 syl2anc φ B + ˙ C - P B quot 1p R D P D = B + ˙ C + ˙ inv g P B quot 1p R D P D
47 2 9 16 abladdsub P Abel B U C U B quot 1p R D P D U B + ˙ C - P B quot 1p R D P D = B - P B quot 1p R D P D + ˙ C
48 35 10 11 44 47 syl13anc φ B + ˙ C - P B quot 1p R D P D = B - P B quot 1p R D P D + ˙ C
49 42 46 48 3eqtr2d φ B + ˙ C + ˙ inv g P B quot 1p R D P D = B - P B quot 1p R D P D + ˙ C
50 22 38 49 3eqtr4d φ A + ˙ C + ˙ inv g P A quot 1p R D P D = B + ˙ C + ˙ inv g P B quot 1p R D P D
51 50 oveq1d φ A + ˙ C + ˙ inv g P A quot 1p R D P D E D = B + ˙ C + ˙ inv g P B quot 1p R D P D E D
52 2 23 30 27 grpinvcld φ inv g P A quot 1p R D U
53 1 2 3 4 9 15 5 31 7 52 r1pcyc φ A + ˙ C + ˙ inv g P A quot 1p R D P D E D = A + ˙ C E D
54 2 23 30 40 grpinvcld φ inv g P B quot 1p R D U
55 1 2 3 4 9 15 5 43 7 54 r1pcyc φ B + ˙ C + ˙ inv g P B quot 1p R D P D E D = B + ˙ C E D
56 51 53 55 3eqtr3d φ A + ˙ C E D = B + ˙ C E D