Metamath Proof Explorer


Theorem r1pcl

Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses r1pval.e E = rem 1p R
r1pval.p P = Poly 1 R
r1pval.b B = Base P
r1pcl.c C = Unic 1p R
Assertion r1pcl R Ring F B G C F E G B

Proof

Step Hyp Ref Expression
1 r1pval.e E = rem 1p R
2 r1pval.p P = Poly 1 R
3 r1pval.b B = Base P
4 r1pcl.c C = Unic 1p R
5 simp2 R Ring F B G C F B
6 2 3 4 uc1pcl G C G B
7 6 3ad2ant3 R Ring F B G C G B
8 eqid quot 1p R = quot 1p R
9 eqid P = P
10 eqid - P = - P
11 1 2 3 8 9 10 r1pval F B G B F E G = F - P F quot 1p R G P G
12 5 7 11 syl2anc R Ring F B G C F E G = F - P F quot 1p R G P G
13 2 ply1ring R Ring P Ring
14 13 3ad2ant1 R Ring F B G C P Ring
15 ringgrp P Ring P Grp
16 14 15 syl R Ring F B G C P Grp
17 8 2 3 4 q1pcl R Ring F B G C F quot 1p R G B
18 3 9 ringcl P Ring F quot 1p R G B G B F quot 1p R G P G B
19 14 17 7 18 syl3anc R Ring F B G C F quot 1p R G P G B
20 3 10 grpsubcl P Grp F B F quot 1p R G P G B F - P F quot 1p R G P G B
21 16 5 19 20 syl3anc R Ring F B G C F - P F quot 1p R G P G B
22 12 21 eqeltrd R Ring F B G C F E G B