Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|
2 |
|
r1padd1.u |
|
3 |
|
r1padd1.n |
|
4 |
|
r1padd1.e |
|
5 |
|
r1pcyc.p |
|
6 |
|
r1pcyc.m |
|
7 |
|
r1pcyc.r |
|
8 |
|
r1pcyc.a |
|
9 |
|
r1pcyc.b |
|
10 |
|
r1pcyc.c |
|
11 |
1
|
ply1ring |
|
12 |
7 11
|
syl |
|
13 |
12
|
ringgrpd |
|
14 |
|
eqid |
|
15 |
14 1 2 3
|
q1pcl |
|
16 |
7 8 9 15
|
syl3anc |
|
17 |
1 2 3
|
uc1pcl |
|
18 |
9 17
|
syl |
|
19 |
2 6 12 16 18
|
ringcld |
|
20 |
2 6 12 10 18
|
ringcld |
|
21 |
|
eqid |
|
22 |
2 5 21
|
grppnpcan2 |
|
23 |
13 8 19 20 22
|
syl13anc |
|
24 |
2 5 13 8 20
|
grpcld |
|
25 |
4 1 2 14 6 21
|
r1pval |
|
26 |
24 18 25
|
syl2anc |
|
27 |
14 1 2 3
|
q1pcl |
|
28 |
7 20 9 27
|
syl3anc |
|
29 |
2 5 6
|
ringdir |
|
30 |
12 16 28 18 29
|
syl13anc |
|
31 |
1 2 3 14 7 8 9 20 5
|
q1pdir |
|
32 |
31
|
oveq1d |
|
33 |
|
eqid |
|
34 |
2 33 6
|
dvdsrmul |
|
35 |
18 10 34
|
syl2anc |
|
36 |
1 33 2 3 6 14
|
dvdsq1p |
|
37 |
7 20 9 36
|
syl3anc |
|
38 |
35 37
|
mpbid |
|
39 |
38
|
oveq2d |
|
40 |
30 32 39
|
3eqtr4d |
|
41 |
40
|
oveq2d |
|
42 |
26 41
|
eqtrd |
|
43 |
4 1 2 14 6 21
|
r1pval |
|
44 |
8 18 43
|
syl2anc |
|
45 |
23 42 44
|
3eqtr4d |
|